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Range-Space Methods for Convex Quadratic Programming

by

Philip E. Gill, Nicholas I. M. Gould, Walter Murray,
Michael A. Saunders and Margaret H. Wright

Systems Optimisation Laboratory

Department of Operations Research

Stanford University
Stanford, California 94305

ABSTRACT

Range-space methods for convex quadratic programming improve in eficiency as the number
of constraints active at the solution decreases. This paper describes in detail three alternative
range-space methods, each based upon updating different matrix factorisations. It is shown that
the choice of method depends upon the relative importance of storage needs, computational

efficiency and numerical reliability.

The updating methods described are applicable to both primal and dual quadratic program-

ming algorithms that use an active-set strategy.
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8 1. Introduction | 1
- 1. Introduction
This paper is concerned with methods for solving ths convex quadratic programming problem —

the minimisation of a positive-definite quadratic form subject to a set of linear constraints on the
variables. We shall assume the problem to be stated in the following form:

T 1,-
QP mlsnelgm cz+2sz

subject to £ < Az < u,

where H is a symmetric positive-definite matrix, and £ is m X n. (The methods to be described
may be applied directly to equality constraints, which are omitted for simplicity. The adaptation
of one of the methods to exploit the structure of simple bound constraints is described in Gill et
al., 1982.) The vector function g(z) = ¢+ Hz will denote the gradient of the quadratic objective
function.

Apart from the requirement of feasibility, the optimality conditions for problem QP involve
only the constraints active (exactly satisfled) at the solution. Let z* denote the (necessarily
unique) solution of QP. Let A* denote the matrix whose rows are the active constraints, and $*
the vector of corresponding components of £ or u, so that A*2* = §*, with strict inequality in all
other constraints. Let L denote the set of rows in A* corresponding to active lower bounds, and
U the set of rows in A* corresponding to active upper bounds. There must exist a vector X* such
that

AN =+ He = ¢g(d"), (1.1)

where
>0 feL; M<0 i€l

Active-set methods are based on developing a prediction of the active set (the working set),
which includes the constraints exactly satisfied at the current point (see, e.g., Gill and Murray,
1977). Let gz, denote the current iterate, and g, its gradient; the ¢, rows of the matrix A, are
defined as the coefficients of the constraints in the working set, and the vector b, is composed of
the corresponding components of £ and u (so that Ayzs = bx). The search direction p, is chosen
so that £, - p, is the solution of a quadratic programming problem with the original objective
function, subject to the equality constraints of the working set. With this definition, p, is itself
the solution of the quadratic program

1
imi Tot 2T
miggsc op+ 50 Hp
subject to Azp =0.

(1.2)

The optimality conditions for (1.2) imply that there exists a vector of Lagrange multipliers
(denoted by )\;) such that

A\ =g, + Hp,. (19
It g, is feasible and A, = A} it follows from (1.1) and (1.3) that £, +p4 = ¢’ and )\, = 2

Otherwise, the working set is changed by adding or deleting constraints until the correct active
set is determined.

he .




2 Range-Space Methods for Convex Quadratic Programming

It is useful to classify active-set QP methods as either range-space or null-space methods.
This terminology arises because the working set can be viewed as defining two complementary
subspaces: the range space of vectors that can be expressed as linear combinations of the rows of
Ay, and the null space of vectors orthogonal to the columns of A,. Each iteration of a quadratic
programming method involves computing p, (and sometimes )\;), and in many cases the work
required in an iteration is directly proportional to the dimension of either the range space or
the null space. For example, the methods of Murray (1971), Gill and Murray (1978), Bunch
and Kaufman (1980) and Powell (1981) are null-space methods, and are most efficient when the
number of constraints in the working set is close to n, since the dimension of the null space is
then relatively small. (Some methods cannot be categorised as either range-space methods or
null-space methods. See, for example, the methods proposed by Bartels, Golub and Saunders,
1970, Fletcher, 1971, and Goldfarb and Idnani, 1981.)

This paper is concerned with range-space methods, which increase in efficiency as the number
of constraints in the working set decreases. In Sections 2, 3 and 4 we describe three alternative
range-space methods. The differences in the methods arise because of the different emphasis placed
on the relative importance of storage needs, computational efiiciency and numerical reliability.
In all cases we shall discuss primarily the details of how to compute p; and M\;, and not the
various strategies for altering the working set. The techniques described may be applied in the
implementation of both primal and dual quadratic programming algorithms that use an active-set
strategy.

As general background for range-space methods, we observe that the constraints and op-
timality conditions for problem (1.3) imply that px and A\ satisfy the n + ¢, linear equations

(H —A,’,')(Pu)_ —ﬂu)

Ak 0 xh 0 ’

which may be solved in several different ways. The range-space approach takes advantage of
the case where H is non-singular. If A, has full rank, p, and )\, are defined by the following
range-space equations:

and

Hpy = A{M— s (1.5)

which underlie all the methods of this paper.

2. Method 1: a low-storage method

Probably the most straightforward range-space method is obtained by utilising the Cholesky
factors of H and A,H1AJ to solve the range-space equations (1.4) and (1.5) directly. This
method has been suggested with respect to general linearly constrained problems by Gill and
Murray (1974, pp. 77-78) and Goldfarb (1976), and with respect to quadratic programming by
Dax (1981).

We shall denote the required factorisations as

H=R'R and AH'AT=VUlU,, (2.1)

where R and U, are upper-triangular matrices of dimension n X n and t, X t, respectively.




2. A low-storage method 3

Note that R needs to be computed only once, and may be overwritten on H. In this section,
all computations involving H are actually performed using R, but are represented in terms of
H for simplicity. The matrix A,H ~1A] changes in a special way as constraints enter and leave
the working set. The associated update procedures for U will be summarised in this section;
complete details are given in the Appendix (see also Dax, 1981).

The fundamental relationship connecting the updated Cholesky factors is the following.
Consider the positive-definite symmetric matrix M with Cholesky factors UTU, and the related
positive-definite matrix M defined by

Mmn
n=(m,“) (2.2)
where m is a column vector and 4 a scalar. The Cholesky factor U of A is given by
Uu T r
0= 0 ,) where UTu=m and pP2=pu—uly (2.3)

(see W’i.lkinson, 1965, pp. 229-230 and Section A.2.1 of the Appendix). (If M is positive definite,
b—u'u>0)

For the remainder of this section we shall drop the subscript k, so that, for example, A
denotes the matrix of constraints in the working set. Barred quantities will be associated with
a single change in the working set. We shall show that the vector A\ can be updated after every
change in the working set with very little work beyond that required to update the Cholesky
factor U. To demonstrate this, we require the following lemma, which we state without proof
(see, for example, Cottle, 1974).

Lemma 1. Let M (M = UTU) be a positive-definite symmetric matrix and b a vector, and let

z denote the solution of Mz = b. Consider the augmented matrix M (M = U7U) defined by
(2.2) and (2.3), and the vector § defined by

5=(;), (2.4)

where f is a scalar. If M is non-singular, then the solution of the system Mz =} is given by
=(")

UTu=m, Uv=yu, pPP=p—uluy and €=

where
B—mTz

7 (2.5)

Adding a constraint to the working set. When a constraint is added to the working set, a new
row (say, aT) becomes the last row of A. The matrix AH~1AT then has the form (2.2), with

M=AH"'AT, m=AH'a, and u=aTH s, (2.8)

so that its Cholesky factor O is given by (2.3).
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4 Range-Space Methods for Convex Quadratic Programming

Given the updated Cholesky factor U following a constraint addition, it is easy to obtain the
updated vector of Lagrange multipliers, as shown in the following theorem.

Theorem 1. Let \ and p denote the solutions to the range-space equations (1.4) and (1.5) at
the point z. Let £ (2 = z -+ ap) be a point at which the row a7 is added to A. Assume that
the updated Cholesky factor U of AH™'AT has been computed, so that u and p of (2.3) are
available. Then the Lagrange multiplier vector that solves (1.4) at £ is given by the vector N,
whose elements are defined by

Aj=\—¢&v, §=12,...,¢t and Aet1=2¢, (2.7)

where v and § are defined by

(a —1)a’p
Uv=u and §{=-——7—0.
="
Proof. By construction of p and definition of §,
AH"10=AH“(g+aHp)=AH"g+aAp=AH"y. (2.8)

Hence, Lemma 1 can be applied to the equations for A and \, and the form (2.7) follows directly.
Since B in (2.4) is given by aT H™1y, it follows from (2.5) that the scalar  is given by

__eTH™ g —mT)

Substituting the expression g + aHp for J and the definition of m from (2.6), the numerator of
(2.9) becomes

aTH 1§ — mT\ = aTH V(g + aHp) — aTH 1 AT
= aTH YaHp — ATA 4 ¢).
Using (1.5), this expression further simplifies to (@ — 1)a”p. Hence, § = (a —1)a’p/p?. 1

Theorem 1 shows that 4t multiplications are required to update A\ when a constraint is added
to the working set.

Deleting a constraint from the working set. First, suppose that A is given by A with its last row
(denoted by aT) deleted. In this case, the relationship between AH'AT and AH AT is the
reverse of (2.2), and hence the new Cholesky factor is simply a submatrix of the old, i.e.

U= ( g : ) (2.10)

The following theorem shows that the updated multiplier vector can be computed with little effort
in this case.




T

-1

PR

2. A low-storage method s

Theorem 3. Let )\ and p denote the solutions to the range-space equations at the point £. Suppose
that the constraint corresponding to the last row of A is deleted from the working set st the point
£ = z -+ p. If A denotes the matrix of constraints in the working set after the row has been
deleted, U denotes the Cholesky factor of AH~1AT, and @ denotes the vector of the first t — 1
elements in the last column of U, the vector of multipliers \ computed at £ with the new working
set is given by

X, =M M+M0;, J=12,...,t—1,

where 0 satisfles U0 = @.
Proof. Our assumption about the position of the deleted row means that

-1 IT -1
ATH- 1A = ( AgTlAT AHT'e ) (2.11)
oTH AT oTH g
Since \ solves (1.4) and (2.8) holds, we may apply Lemma 1 with AH AT as M and AH AT
as M. This gives
( DD W, )
A= X
M
where

AH 1AT9 = AHta.

Becsuse UTU = AH~1AT, (2.10) and (2.11) imply that UT@ = AH "'a; since 070 = AH1AT,
it follows that ¢ may be obtained by solving the triangular system Jo=6. J

Theorem 2 implies that the vector X may be obtained in ¢ multiplications.

In general, a row may be deleted from any position within A, so that Theorem 2 cannot
be applied directly. In this case, the rows of A are permuted to move the deleted row to the
last position and s sequence of plane rotations is applied to restore the permuted form of U to
upper-triangular form (see Section A.1 of the Appendix). In this case, the relationship between

U and O is of the form 0
qrm=( )
07

where Q is a sequence of plane rotations and I7 is a permutation matrix. The number of
multiplications required to perform these rotations when the s-th constraint is deleted is 3(¢ — 5)?
(we assume the three-multiplication form of the plane rotations; see Gill et al., 1974). Thus, the
essential features of Theorem 2 remain unchanged, the only difference being the need to reorder
the elements of \ before updating.

Discussion of the low-storage method. Two advantages of this method are the relative simplicity
of the associated updates and the low storage requirements. Since R may be overwritten on the
space required to store H, the storage space required for this method (beyond that needed to
represent the problem) is of the order of 4¢3 ., locations, where ¢y, is the maximum number of
constraints in the workii.,g set. In the case where there are always few constraints in the working
set, the method requires very littie extra storage. The disadventage of the method lies in the
possible magnification of any ill-conditioning in A and H during the implicit formation of the
product AH—1A7,

The following table summarises the number of multiplications needed to perform each com-
putation in the low-storage method.
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Update A Compute p AdQq constraint Delsts «-th constraint

it n34nt ndints jt? 3(t—i)?

3. Method 2: a better conditioned method

The range-space equations (1.4) and (1.5) are not the best representation of p; and \x for purposes
of computation, since formation of the matrix A, H “A{ may exacerbate the conditioning of the
original problem. This dificulty may be lessened by rewriting the equations in terms of the LY
factorization of Ay, i.e.,

A = LkY{n (3.1)
where the ¢ columns of Y, are orthonormal n-vectors, and L, is a t X ¢ lower-triangular matrix.
(The columns of Y, form an orthonormal basis for the range space of the rows of A;.)

Substituting (3.1) into (1.4) and (1.5), we obtain

LT\, =0, (3.2)
Hpy = Y3y — g, (3-3)

where 0 satisfies
YTH™'Y, 0, =YIH™Yy,. (3.4)

Equations (3.2) and (3.3) are theoretically equivalent to (1.4) and (1.5); however, they are likely
to have supcrior numerical properties, since the orthogonality of the columns of Y3 means that
the condition number of Y{H™1Y, is no greater than that of H. The use of the factorisation
(3.1) to derive a better conditioned projection matrix was suggested by Gill and Murray (1974,
pp. 78-79) in the context of general linearly constrained problems; see also Goldfarb (1976).

Computation of \; and p, from (3.2) and (3.3) may be implemented by storing the Cholesky
factors of H (which need be computed only once), and updating the LY factorization of 4; and
the Cholesky factors of Y7H ™'Y, as the working set changes. A detailed description of the
update procedures is given in Section A.2 of the Appendix. For simplicity, we shall drop the
subscript £ in the rest of this section; barred quantities will denote those resulting from a single
change in the working set. Let U denote the Cholesky factor of YTH 1Y, i.e.,

YTH"'Y =UTU.
Adding a constraint to the working set. When a constraint is added to the working set, a new

row (say, aT) is added to A. The effect of this change on the LY factorisation is that a new
column is added to Y, so that ¥ is given by

Y=(Y =2)
In this case, the matrix YTH 1Y is of the augmented form M (2.2), with
M=YTH™'Y, m=YTH 'z and u=2TH s

Thus, exactly the same update procedures described in Theorem 2 can be applied to compute the
updated Cholesky factorization of PTH 1Y,

We now show that the vector # of (3.4) can be updated rather than recomputed, using a
technique similar to that given in Section 2.1 for updating \.
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Theorem 8. Let p and # denote the solutions to the equations (3.3) and (3.4) at the point =. Let
- £ (£ = z + ap) be a point at which the row aT is added to A. Assume that the LY factorisation
"‘ of A and the Cholesky factor U of YTH 1Y have been computed. Let u and p denote the
: corresponding portions of U, as in (2.3), and let 2 denote the last column of Y. Then the vector
@ that solves (3.4) at Z is given by

0;=0;—¢v;, §=1,2,...,¢t, and bey1=2¢,
where v and £ are defined by

(e —1)s%p
Uv=u and ¢&€=-— 1%,
(==
Proof. Since Y7p = 0, the proof is essentially the same as for Theorem 1. §

Theorem 3 shows that 4¢? additional multiplications are needed to update ¢ after a constraint
is added to the working set.

Deleting a constraint from the working set. When a constraint is deleted from the working set,

‘ the LY factorization of A may be updated as described in Section A.2.2 of the Appendix, using

. a sequence of plane rotations that restore the lower-triangular form of L. The basic relationship
between Y and Y in this case is

YP=(Y 2), (3.5)

where the orthonormal matrix P is the product of suitably chosen plane rotations. We assume
that the Cholesky factor U of YH~1¥ T is available.

In this situation, the vector § can be computed with only a small amount of additional work
beyond that required to update L, Y and U, as indicated in the following theorem.

Theorem 4. Let 0 and p denote the solutions of (3.3) and (3.4) at the point z, and suppose that
8 constraint is deleted from the working set at the point £ = z < p. Assume that the updated
matrix ¥ in the LY factorisation of A, the updated Cholesky factor U of YTH 1Y and the
related vector @ have been computed. Then the solution @ of (3.4) at £ is given by

ij=wj+W¢0j, j=12,...,t—1,
with
w=PT9 and UDo=a,
' where P is defined in (3.5).
Proof. Multiplying (3.4) by PT and inserting ¢ = Pw, we obtain
YTH-'Y PTH 2\ [ YTHTY
fTH'Y 2TH 2 )w —-( ITHYy )

Since YTH 1y == YTH 1y, the form of (3.6) shows that Lemma 1 can be invoked with P TH 1Y
and Y7TH 1Y taking the roles of M and M respectively. It follows that

(")
we

where 0 satisfles the single triangular system U0 =a. 1§

PTYTH™'YPuw = ( (3.6)

~ _ | g
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Discussion of the better conditioned method. The numerical advantage of Method 2 compared to
the low-storage method results from avoiding the use of )\, in computing the search direction (see
(1.5)). ¥ A H~'A] is ill-conditioned, the computed value of \; may contain significant errors,
which may then propagate to px. The accuracy of dx in Method 2 depends on the conditioning of
Y{H~'Y,, which is no worse than that of H itself. A disadvantage of Method 2 is the additional
storage required for the n X t); matrix Y, and the #;-dimensional triangular factor of Y{H -ly,.
Furthermore, the updates required at each iteration are more co4ly than in Method 1 or 3 (see
Section 5).

The following table indicates the number of multiplications required to perf.rm each com-
putation during an iteration of Method 2.

Update # Compute p Compute \ Add constraint Delete ¢th constraint

3 ndyint §2 n3 4 dnty {12 In{t—1)2+ §(t—1)?

4. Method 8: the weighted Gram-Schmidt method
Following Bartels, Golub and Saunders (1970), we note that the range-space equations may be
solved using the factorizations

H=RTR and AR '=(L, 0)Qf (4.1)

where R is the n X n Cholesky factor of H, L, is a t; X t; lower-triangular matrix, and @, is
an n X n orthogonal matrix. Note that A, H1AJ = L,LJ and therefore the transpose of Ly is
identical to the triangular matrix Uy (2.1) of Method 1.

The factorizations (4.1) provide a solution to the range-space equations (1.4) and (1.5) in the
form:

Lin=Y{R™ Ty, (4.2)
Rp, = —2,Z{R 7y, (4.3)

where Y, and Z, are the n X ¢) and n X (n — t;) sections of the matrix @,, i.e.

q=("r 2Z)

. A ;ariant of (4.1)~(4.3) has been used by Goldfarb and Idnani (1981), who recur the matrix
QxR™".
We now propose an alternative method based on (4.1)-(4.3), in which we take advantage of
the identity Z,ZT = I — Y,Y7 in order to avoid storing Z:. In place of the full orthogonal
factorisation in (4.1), we utilise the weighted Gram-Schmid¢ factorisation

AR '=L,Y{, (4.4)

which can be updated as described by Daniel et al. (1976) (see Section A.3 of the Appendix).

Lot
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With this approach, A\x could be recurred using the results of Theorems 1 and 2 (this follows
directly from the equivalence of U and the transpose of L;). However, we shall show that a more
eficient method may be obtained by recurring three vectors uy, vx and wy, which are defined by
the relations

RTu,=g,, v,=YJu, and w; =Yy, —u,. (4.5)

(Note that YJw, = 0.) Substitution into (4.2) and (4.3) allows A\, and p; to be defined from

LI\, =v, (4.8)
and
Rpy = . (4.7)

In practice, initial vectors ug, o and wy are defined from (4.5) in terms of an initial point
zo and the weighted Gram-Schmidt factors of a corresponding initial working set Ag. (The point
zo must satisfy Agzo = bg.) Thereafter, the vectors u,, vy and w, can be updated at negligible
cost, as we show below. The principal computational effort per iteration lies in updating the
factorization (4.4) as the working set changes, and in computing p; (and A\ when needed) from
(4.6) and (4.7).

As in the last two sections, we shall drop the subscript k and use barred quantities to denote
a single change in the working set.

Adding a constraint to the working set. When a constraint is added to the working set, a new
row (say, aT) becomes the last row of A. The relationship between the old and new matrices Y
and Y of (4.4) is given by

Y=(Y 2) (4.8)

(see Section A.3.1 of the Appendix). The following theorem describes how the quantities u, v and
p may be updated following a constraint addition.

Theorem 5. Let p denote the vector that satisfles the range-space equation (1.5) at the point z.
Let u, v and w satisfy (4.5) at the point z. Let Z (£ = z 4 ap) be a point at which the row aT is
added to A. Assume that the updated factors L and ¥ of A = LY TR have been computed, and
that z, the new last column of Y, is available. The vectors u, v and w are updated as follows:

(i) @8 = u+ aw; (4.9)
(i) g= ( :: ), where v = z7g;
(iii) o= (1—a)w+ve

Proof. Using (4.1), (4.7) and the quadratic nature of the objective function, we have

RTa=y
=g+ aHp
= RTu+ aRTRp
= RTu + aRTvw,

and (4.9) follows immediately.
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To prove (ii), we use the definition of @, (4.8) and (4.9) to give

0=yra=(YT)a___(Y*'u+aY"w )
T

z zTg

Since YTw = 0 and v == Y Ty, this proves (ii). Similarly,
o=Ya—0=(Y z)(::)—(u+aw),

which reduces to (iii) atter substituting Yv—u=w. §

Note that in a dual QP algorithm that retains dual feasibility, the steplength a = 1 will
usually be taken when a constraint is added to the working set; cases (i) and (iii) then simplify.
Hf further constraints are added at the same point, Theorem 5 remains true witha =0, p =0,
and w = 0.

Deleting a constraint from the working set. When a constraint is deleted from the working set,
the relationship between the old and new matrices Y and ¥ of (4.4) is given by

YP=(Y z), (4.10)

where the orthonormal matrix P is the product of suitably chosen plane rotations (see Section
A.3.2 of the Appendix). The following theorem indicates how the quantities u, v and w may be
updated in this case.

Theorem 8. Let u, v and w satisfly (4.5) at the point z, and suppose that a constraint is deleted
from the working set at the point Z = z -+ ap, where p satisfles (4.7). Assume that the updated
factors L and ¥ of A = LYTR have been computed, so that the relationship between the old
and new orthogonal factors is given by (4.10). Then

() 4= u- aw; (4.11)
(ii) ( : ) = PTy, where v =2Tqg; (4.12)
(iii) 0 =(1—a)w—vs (4.13)

Proof. Result (i) follows as in Theorem 5. To prove (ii), note that, since # = ¥ T4, we may write
) V4l
(2)=Cir)e
where » = 27a. Using (4.10) and (4.11) gives
0 TyT
, ) =PTY (v + aw).

Since YTw = 0 and Y Ty = v, this gives the desired result.
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Finally, to prove (iii), we use the definition of ® to write the identity
/]
o=Yo—a=(Y z)( )—a—uz.
v

Using (4.10), (4.11) and (4.12) gives
®=YPPTy—u—aw—vz.

Since P is orthonormal and Yv — u = w, this expression simplifies to (4.13), as required. @

Note that a primal QP algorithm will usually delete a constraint only when @ = 1, in which
case (i) and (iii) simplify. If more than one constraint is deleted at the same point, the theorem
remains true witha=0,p=0and w =0.

Discussion of the weighted Gram-Sehmidt method. The major storage required by the weighted
Gram-Schmidt (WGS) method beyond that for the low-storage method is for the n X t orthonormal
matrix Y3. The WGS method has a storage advantage compared to Method 2, since it requires
storage of only one t-dimensional triangular matrix. A numerical advantage of the WGS method
(as of Method 2) is that A\, is not used explicitly to compute p,. However, the conditioning of
AR~} may be worse than that of A, itself, and hence there may be more difficulties with the
factorisation (4.4) than with (3.1).

The following table gives the number of multiplications needed to perform each computation
in the weighted Gram-Schmidt method.

Compute p Compute \ Add constraint Delete i-th constraint

in? i §nd+ant 3n(t—1)+-3(t—9)*

B. Conclusions

Table 1 summarises the major work (measured by multiglicationl) associated with Methods 1, 2
and 3. In any active-set method, the quantities Az and Ap must be computed, where A contains
the constraints not already in the working set. In practice, the vector Ap is computed, and
Az is updated using A2 = Az + aAp. The work needed to perform this operation (n(m — t)
maultiplications) is not included in the table, since it is the same for all methods.

The table gives the multiplication counts for two types of iteration of a typical feasible-point
active-set QP method: (i) compute p and add a constraint; (ii) compute p, compute A and delete
a constraint. As indicated by the summary tables for each method, the amount of work required
to delete a constraint depends on the index of the constraint to be deleted. The figure in the
table corresponds to the case when the deleted constraint is the middle row of the working set
(i.e., has index 42). The “average® figure is the average work between iterations of type (i) and
(ii). The *average™ value is given in a general form, and for three specific values of t (t = 0, §n
and n), in order to indicate the relative efficiencies of the three methods.

Table 2 summarises the factorisations used in each of the three methods, and the associated
storage requirements. The entries that define storage give the number of floating-point words

R wra— PP
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[ - Table 1
F‘ Summary of Work Required for Range-Space QP Methods
2
Cost to Method 1 Method 2 Method 8
(Low Storage) (Better Conditioned) (WGS)
Compute p, n? i antyi2 nd i ant4i2 n3+ant
add constraint
Compute p and ), n?+nt+§12 niyfnts 40 indsgnts §id
delete constraint
Average nd+gnis gt in?eLnte 3§00 $n2yInty§e?
Average (1 = 0) 1.5n3 1.5n3 in?
Average (t = }n) 2.5n3 3.5n2 1.6n?
Average (t = n) £.1n? 6.3n? 8.1n3
Table 2
Summary of Storage Required for Range-Space QP Methods
Mathod 1 Method 2 Method 8
(Low Storage) (Better Conditioned) (WGs)
Storage for A mn Same Same
Storage for H (R R) in® Same Same
Additional factorisations ATH™ A =UTU A=LYT ARl =LYT
YTHTY =UTV
Additional storage 3. e+ iman Y I Y -

Sk
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required for a dense problem. The entry “Same” means that the storage required is the same for
all methods.

If only one of the three methods were to be chosen for general use, we would favor the
choice of the weighted Gram-Schmidt method (Method 3). Its storage requirements are relatively
modest, and it tends to encounter relatively few difficulties with numerical stability. Although the
amount of storage required is more than that for Method 1, in our view the superior numerical
properties justify the additional storage cost. Method 2 is the most numerically stable, but
requires significant additional storage and work.

The methods described in this paper should be effective in solving QP problems with few
constraints whenever the size or structure of the Hessian is such that its Cholesky factors can
be computed and stored. Thus, these methods may be applied directly to large problems in
which the Hessian is suitably sparse and structured (for example, when the Hessian is diagonal
or banded).

Sparsity in the constraints will not tenc. to be helpful in Methods 1 and 3, since sparsity in
A does not carry over to the factorisations involving A. For Method 2, it might be possible to
compute a compact representation of Y if A is sparse.

If the available storage is sufficient for a ¢ X ¢t matrix but not an n X ¢ matrix, Method 1 is the
only possible choice. If an n X ¢ matrix may be stored, any of the methods may be used. Unless
numerical stability is of critical importance, Method 2 would generally not be considered. The
choice between Methods 1 and 3 depends on the relative ease with which the system of equations
Hz = b can be solved given a factorisation of H. Methods 1 and 3 are similar in efficiency if this
process requires between nt and 2nt operations; Method 1 is preferred if the number of operations
is less than nt, and Method 3 if the number is greater than 2nt.
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Appendix — Methods for modifying matrix factorizations

In this Appendix we shall outline techniques for updating the matrix factorisations associated
with a ¢ X n matrix A and the n X t orthonormal matrix Y that forms a basis for the range space
of the rows of A. The discussion is roughly divided into two parts (although much of the basic
theory is common to both parts). In the first part, we consider how to update the factorixations

A=LYT and YTMY =UTV, (A1)

where M is an n X n positive-definite symmetric matrix and U is a t X ¢ upper-triangular matrix,
when row changes are made to the matrix A.

In the second part we are concerned with updates following a row change in A of the
factorization

A=LYTR,

where H is an n X n symmetric positive-definite matrix with Cholesky factor R (so thst H =
RTR), and L is a t X t lower-triangular matrix.

Some of the procedures described here are simple extensions of those described by Gill et al.
(1974) and Daniel et al. (1976). Some methods that have been described previously are repeated
here for completeness.

The discussion of the modifications will assume a general familiarity with the properties of
plane rotations. Sequences of plane rotations are used to introduce seros into appropriate positions
of a vector or matrix, and have exceptional properties of numerical stability (see, e.g., Wilkinson,
1965, pp. 47-48). Throughout the Appendix we shall assume the three-multiplication form of a
plane rotation; see Gill et al. (1974).

We shall illustrate each modification process using sequences of simple diagrams, following
the conventions of Cox (1981) to show the effects of the plane rotations. Each diagram depicts
the changes resulting from one plane rotation. The following symbols are used:

x denotes a non-sero element that is not altered;

m denotes a non-sero element that is modified,

f denotes a previously zero element that is filled in;

0 denotes a previously non-sero element that is annihilated; and
(or blank) denotes a sero element that is unaltered.

In the algebraic representation of the updstes, barred quantities will represent the “new” values.

A.1. A basic tool — updating after a column permutation

One of the basic operations in updating factorisations is the need to restore a matrix to triangular
form after one of its rows or columns is moved to the first or last position. We shall illustrate
this operation in the case where it is required to move an arbitrary column of an upper-triangular
matrix R to the last position. There is no loss of generality if we consider moving the first column
to the last position (this is the most expensive case to consider).

A.1.1. Method 1: using a column interchange. Suppose that IT is a permutation matrix that
interchanges the first and last columns of R. We shall use a 5 X 5 example to illustrate the

. S 3 e e o - L L
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column interchange. The permuted matrix has the form

x x x x X

x x x x

RII=] x X X

x x

We transform RI7 to upper-triangular form in two stages. First, we apply a sequence of plane
rotations on the left so that the “vertical spike” of nonzero sub-diagonal elements is transformed
into a *horizontal spike®. The horisontal spike is eliminated with another sequence of plane
rotations applied on the left.

To eliminate the vertical spike, a backward sweep of plane rotations is applied to the rows of
RII in the planes (n,n — 1), (n,n — 2),...,(n,2). We illustrate the effect of the transformation
on the 5 X § example.

RS - S Ste

X X X X X X X X X X x X X X X x X X X X
x X X X x X X X X X X X 0 mmm
b3 x X - X x -~ 0 m m - x X
x x 0 m . x x
x m f m fm mf mm

The resulting matrix is restored to upper-triangular form by a forward sweep of (row) rotations
in the planes (1,n), (2,n),...,(n —1,n). In the 5 X 5 case we have

X X X x X mmmmm x X X X X X X X X X X X X X X
x X x X x X mmm f x X x X x X X x
x x - x — x x - mm¢{ - x X X

x x x x mf

xX X X X O mmm f «+ 0 mmm + + 0 mm Om

If both sweeps of plane rotations are denoted by a single orthonormal matrix P, we have

R=PRI. (A2)

A.1.2. Method 2: using column shifts. There are other permutation matrices I7 that will move
the first column of R to the last position. A more common method is to move the first column
to the last position and shift all the remaining columns one position to the left. In this case, the
permuted matrix has the upper-Hessenberg form

x = x x 4

X x x x
RIT = X X x
X x

This matrix is restored to upper-triangular form by a forward sweep of row rotations applied on
the left to eliminate the subdiagonal elements, as shown in the following diagram.

W Vel SRy Wellt VWDE TN Rl YR GO Vo W P
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®x X X X X mmmmm x ¥ X X Xx X X X x X X X x X X
X X X X Ommm f m Immm ¢ X X X X x X X X
x x X — x x — ommf mmm - X X X
x X x x X x Om ¢t mm
Y] x x x of

The resulting transformation is of the form (A2) except that P comprises a single sweep of
rotations instead of a double sweep.

A.1.3. Discussion. Clearly, the updating techniques of the last two sections are intimately related.
(For example, in Section A.1.2 the transformation of the upper-Hessenberg matrix to triangular
form could have been effected by first applying the permutation that moves the first row to the
last position and shifts the remaining rows up by one position. The intermediate matrix is then
triangular, with a *horisontal spike” in the last row. The spike can be eliminated using the
method of Section A.1.1.) We have considered these transformations separately because each of
the two methods will be most suitable under some circumstances. For example, the rotations
used to transform R may also be applied to another matrix that itself must be maintained in
some specific form (this is the case for the methods described in Section A.3). In another case,
the triangular matrix may need to be stored as a one-dimensional array for maximum efficiency
in some high-level computer languages. In this case, Method 1 would be most suitable because
no new elements are created outside the triangular structure (except for the spikes, which can be
held in a work vector).

If there is no overriding reason to use one method or the other, the decision may be influenced
by other factors. For example, although Method 1 requires two sweeps of (row) rotations, some of
the elements in the vertical and horizontal spikes could be zero, in which case the corresponding
rotations may be skipped. In contrast, although Method 2 appears to require just one row sweep,
the operations involved in shifting the columns one position to the left should be regarded as
being equivalent to a sweep of “cheap” column rotations. Also, assuming R to be nonsingular,
the rotations in the subsequent row sweep can never be skipped (although some of them could be
simple interchanges).

In the last two sections we have shown that the restoration of a triangular matrix to triangular
form after a row or column permutation implicitly or explicitly involves the application of plane
rotations to one or more of the following three types of matrix:

( R ) “horisontal spike”

oT
(v R) “vertical spike” (A3)
(R v) “upper-Hessenberg” (A4)

The structure typified by these three standard cases will occur repeatedly in later sections.

A.2. Updsting the factors of A and YTMY

A.2.1. Adding a new row to A. When a new row is added to A, the row dimension of L and the
column dimension of Y in (A1) both increase by one. Without loss of generality we shall assume
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that A4 is a ¢ X n matrix, and that the new row is added in the last position, i.e.,

i-(3)

The computation of the new column of Y is equivalent to a single step of the row-wise computa-
tion of the orthogonal factorization of A by the modified Gram-Schmidt algorithm. The new
orthogonal factor ¥ is defined as

Y=(Y 2), (A5)

where z is given by a multiple of the vector a orthogonalised with respect to the orthonormal set
of columns of Y, i.e. z=7(I —YYT)a, where r is a normalising factor. For more details of the
computation of z, including the use of reorthogonalization, see Daniel et al. (1976).

Given 2, the new row of L is found from the identity

- A L 0\/YT )
= = y AB
4 (a") (‘r ’7)(:" (A%)
where the vector [ and scalar 7y are to be determined. The last row of this identity gives

ea=YI+ s (A7)

Premultiplication of this equation by Y7 gives | = Y Ta because of the orthogonality of the
columns of (Y 2'. Similarly, premultiplication of (A7) by 2T gives v = s7a.

The relationship (AS5) implies that

PTMY = ( YTMY YT™M: )
:TMY 2™z

The Cholesky factor U of Y TMY is given by

U=(g :), where UTu=YTMz and p® =3s"Mz—uTu

(see Wilkinson, 1965, pp. 229-230). If YTMY is positive definite, sTMz — uTu > 0.

The work necessary to update the factors L, Y and U when adding a newrowtoat X n
matrix A is dominated by the 4¢3 4 n? 4 nt multiplications necessary to form u and p, and the
2(k 4+ 1)nt multiplications necessary to form 2 and the new row of L, where £ (¢ > 0) is the
number of reorthogonalization steps required. For well conditioned problems, reorthogonalisation
is usually not required.

A.3.2. Deleting a row from A. Suppose now that a row (say, the i-th) is deleted from a ¢t X n
matrix A, so that the row dimension of A, the column dimension of Y and the dimension of L
in (Al) are decreased by one. The method given in the last section for adding a row to a matrix
implies that if the last row of A is deleted, the new factors are identical to the old except that
the last column of Y and row and column of L are omitted. Consequently, in the general case,
the only nontrivial work necessary to perform a column deletion is that required to update the
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factors after the deleted column is moved to the last position. We shall show that this updating
can be achieved using the methods of Section A.1.

From (Al), we have
(3)-or .
a

where S is a ¢ X t matrix that is identical to L except that the ¢-th row is moved to the last
position and all the remaining rows have been shifted upwards. For example, in the case t — 6
and ¢ = 3, we have ( . \

X X X
x
X
X

X X X Xx
X X X X X X

kXXX }

The matrix comprising the last £ —{-}-1 columns of S is the transpose of a matrix of the form
(A4) and it may be restored to lower-triangular form using a forward sweep of column rotations
(say, P) as in Method 2 of Section A.1.2. The effect of these rotations is to give the factorisation

( ‘T) = LPTYT,

a
where Lisat Xt lower-triangular matrix. Let I and the product Y P be partitioned so that
1=(L ) ama vp=(r 1) (A9)
IT 4

where L is a (t — 1) X (¢t — 1) lower-triangular matrix, ¥ is an n X (t — 1) orthogonal matrix,
and 2 is an n-vector. A comparison of (A9) with (A6) shows that A = LY 7T as required.

The plane rotations applied to Y also transform the Cholesky factor U of YTMY. The
order of the rotations in P has been chosen so that each transformation introduces a single new
subdiagonal element in the upper-triangular matrix U, as shown in the following sequence of

diagrams.

M M X X M X X x MM x x x % x MM x X x x x M

% X X X X x MM x x x x AM x X X xInm

X X X X mmx x x MM x x xmm

- - -

X X x fmx x xmm x x xmm

x X x x f mx xmm

x x x fm

The transformed matrix UP is now in upper-Hessenberg form similar to (A4). As described
in Section A.1.2, this matrix may be restored to upper-triangular form by s (partial) sweep of row
rotations (say, the matrix @), which is applied on the left to eliminate the subdiagonal elements.

The relationship between U and its transformed version is

wr-( )

where U is the upper-triangular factor of PTMY.

The work associated with deleting a row from A comprises Q(t—c')’ multiplications to restore
8, 3n(t — §) multiplications to compute Y P, and 3(t — ¢)® multiplications for the two sweeps of
rotations applied to U.
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A.3. Updating the factorization A= LYTR

A3.1. Adding a row to A. When a new row is added to A, the row dimension of L and the
column dimension of Y both increase by one. Suppose that A is a ¢ X n matrix. If the row is
added to the last position, the updating of Y and L is identical to that described in Section A.2.1.
In this case the new column 2 is given by a multiple of the vector R—7a orthogonalised with
respect to the orthonormal set of columns of Y, i.e. 2= r(I —YY T)q, where g satisfies R7Tg=a
and 7 is a normalizing factor.

The number of multiplications associated with adding a new row to A includes the following
(where only the highest-order term is given): n? to form g¢; and 2(k + 1)nt to form = and the
new row of L, where k is the number of reorthogonalisation steps required.

A.3.2. Deleting a row from A. If the ¢-th row, say a7, is deleted from a ¢t X n matrix A, the
column dimension of Y and the dimension of L are decreased by one. (As in Section A.3.1, the
dimension of R is unaltered.) The method used to update the factors is identical to that given
in Section A.2.2, except that it is not necessary to select P so that the structure of the factor U
is maintained. In particular, the factorisation

A
( T) = SYTR,

analogous to (A8) may be obtained by interchanging the i-th and ¢t-th rows of A. In this case,
the matrix S has a form similar to the transpose of (A3) and may be reduced to iower-triangular
form by Method 2 of Section A.1.1.

The work associated with deleting the i-th row from A comprises 3(t — 1) muitiplications to
triangularise S and 3n(t — §) multiplications to compute Y P.
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